Nuclear fuel recycling — Underutilized alternative power resource?

Sellafield-nuclear-fuel-recycling-plant, UK. Photo: Wikipedia.

Sellafield nuclear fuel recycling plant, UK. Photo: Wikipedia.

Nuclear-fuel-based electric power generation has a number of major advantages compared to fossil-fuel-based power systems — particularly the fact that there are no carbon-compound greenhouse gas (GHG) emissions, and also that nuclear fuels are abundant. But there are clear drawbacks to nuclear power, and certainly one of the most notorious is the production of nuclear waste. This waste must be safely contained, and much of it endures for thousands of years.

But recycling of this waste, particularly to produce more nuclear fuel for power generation, is also not only possible, but a technological process already in use, albeit on a relatively small scale. Especially with worldwide growing concern over global climate change related to GHG emissions, the benefits of expanding the production of nuclear fuel (called mixed oxide, or MOX) have recently started to receive more attention. “Recycling is a way to re-use the valuable resources in used nuclear fuel to produce more nuclear-generated electricity” explained Henry B. Spitz, a Nuclear & Radiological Engineering professor at the University of Cincinnati in an op-ed posted 25 September 2014 on the Cincinnati.com website.

Others articulate a similar case. “As we seek more effective ways to prevent the worst effects of climate change, recycling used nuclear fuel should be high on the list” argues Ivan Maldonado, an associate professor in the Department of Nuclear Engineering at the University of Tennessee, in an op-ed in The Tennessean of 21 September 2014.

Maldonado and other proponents of nuclear recycling point out that France, which already generates 75 to 80 percent of its electricity via nuclear power, has a robust nuclear fuel recycling program. Various researchers, politicians, and other observers and questioning why the United States — with an estimated 70,000 to 80,000 metric tons of used nuclear fuel in storage — has lagged behind in this area of energy technology.

“If France and other nations can do it, why can’t we?” asks William F. Shughart II research director of the libertarian-leaning, Oakland, California-based Independent Institute, in an October 2014 Forbes article titled “Why Doesn’t U.S. Recycle Nuclear Fuel?

“The nuclear fuel recycling process is straightforward” Shughart explained.

It involves converting spent plutonium and uranium into a “mixed oxide” that can be reused in nuclear power plants to produce more electricity. In France, spent fuel from that country’s 58 nuclear power plants is shipped to a recycling facility at Cap La Hague overlooking the English Channel, where it sits and cools down in demineralized water for three years. Only then is it separated for recycling into mixed-oxide fuel.

The nuclear material that cannot be recycled is embedded in glass logs, where it will remain until France builds a deep-underground repository for unusable waste.

“Compared to electric generating plants fueled by coal and other fossil fuels, nuclear plants have a very light ‘carbon footprint’” says Shughart. “What we ought to do is what other countries do: recycle it. Doing so would provide a huge amount of zero-carbon energy that would help us reduce greenhouse-gas emissions.” According to Maldonado, “Such recycling would reduce the amount of waste requiring permanent disposal by roughly half. It would extend uranium resources.”

Shughart relates that “A major obstacle to nuclear fuel recycling in the United States has been the perception that it’s not cost-effective and that it could lead to the proliferation of nuclear weapons.”

Those were the reasons President Jimmy Carter gave in 1977 when he prohibited it, preferring instead to bury spent nuclear fuel deep underground. Thirty-seven years later we’re no closer to doing that than we were in 1977.

France, Great Britain and Japan, among other nations, rejected Carter’s solution. Those countries realized that spent nuclear fuel is a valuable asset, not simply waste requiring disposal.

One should note, however, that there are understandable reasons for public and governmental reluctance to fully embrace nuclear power and nuclear fuel recycling. Not only is nuclear material exceptionally toxic, but historic major disasters such as those at Three Mile Island (USA), Chernobyl (Ukraine), and Fukushima (Japan) have demonstrated huge lapses in the safety of both the infrastructural design and the operation of nuclear power facilities (and the energy industry on the whole has not exhibited a comforting safety record in other areas either, as witnessed in recent years by serious problems and accidents with hydraulic fracturing, pipeline operations, and offshore oil drilling).

Bottom line: The technology is available, but the competency of nuclear power developers and producers, within the current social-economic-political environment, to proceed with nuclear fuel recycling at a sufficiently high level of safety, leaves grounds for serious questions and uncertainties. ■

Advertisements

Solar PV power becoming much more abundant and affordable

Solar PV array harnesses sun's radiation for clean, sustainable power. PVs have been dropping in price, resulting in rapid increase in available capacity. Photo via CleanTechies.com.

Solar PV array harnesses sun’s radiation for clean, sustainable power. PVs have been dropping in price, resulting in rapid increase in available capacity. Photo via CleanTechies.com.

Solar photovoltaic (PV) systems have been ascending in importance as a source of electric power, according to emerging data.

It’s mainly a result of plummeting costs, writes Peter Diamandis in a Sep. 18th article in the online Huffington Post news site. Diamandis is Chairman and CEO of XPRIZE, described as an “educational nonprofit organization whose mission is to bring about radical breakthroughs for the benefit of humanity.”

According to Diamandis, “the price per watt of solar panels has gone down precipitously.” His commentary presents a graph indicating that “the price of solar panels has dropped 97 percent from 1975 to 2012”:

2_FPN-graph-Solar-panels-avg-price-per-watt_via-Peter-Diamandis

Diamandis presents another graph illustrating his contention that the “capacity for photovoltaic production has grown at an exponential rate over the last decade.”

3_FPN-graph-Solar-Annual-PV-prodctn-Mwatts_via-Peter-Diamandis

In another article, published April 24th on the online technical website CleanTechnica, Silvio Marcacci focuses on what he calls the “astounding” growth in U.S. solar energy capacity, with data from the U.S. Energy Information Administration (EIA):

Solar energy’s rapid growth in America is evident – even casual observers will note the proliferation of solar photovoltaics (PV) across the country. But sheer size is usually illustrated best by statistics, and in this case, the stat is 418%

That’s the percentage installed solar energy capacity grew in the U.S. from 2010-2014, according to the U.S. Energy Information Administration’s April 2014 Electricity Monthly Update.

In 2010, writes Marcacci, America’s total solar capacity was a mere 2,326 megawatts (MW), representing just 0.22% of the nation’s total electricity generation capacity. “But the plummeting price of solar modules and increasing efficiency of installation has sent solar skyrocketing” he emphasizes:

By February 2014, 12,057MW of solar electricity generation had been installed across the country, a growth rate of 418% and 9,731MW in sheer gain. Solar’s share of total U.S. generation capacity now stands at 1.13% – and EIA estimates continued growth across the industry.

4_FPN_Graph-US-solar-capacity-growth-2010-2014-20140424_EIA-via-Cleantechnica-com

EIA, Marcacci points out, has noted the “quick move” of the solar energy industry from “relatively small contributor” into “one of comparative significance.”

In his own Huffington Post summary, Peter Diamandis concludes: “As we see in so many other areas of technology, solar power is only going to get better, cheaper and easier.” ■

Solar power production expanding in Texas

A Recurrent Energy solar PV farm in California's Mojave Desert. Planned West Texas installation would be similar to this. Photo: Recurrent Energy.

A Recurrent Energy solar PV farm in California’s Mojave Desert. Planned West Texas installation would be similar to this. Photo: Recurrent Energy.

Texas — where “energy” has traditionally been virtually synonymous with oil and gas — is one of the last places on earth where you’d expect solar power to start gaining a foothold … particularly with the ridicule and outright hostility toward solar coming from many conservative political potentates.

But, lo and behold, solar power development is suddenly having a surge in the Lone Star State. Long considered the energy equivalent of a puny weakling mainly because of its high cost, solar power has become much more attractive over the last couple of years as its cost has dropped precipitously.

Texas’s spectacular solar power surge is the focus of a June 4th examination in the Dallas Morning News. Headlining the “momentum” that solar power has been gaining in the state, the article notes that “vast swaths of ranch land have been optioned for the large-scale solar developments usually seen only in California.”

These recent developments “represent the strongest foothold the solar industry has achieved in a state that does not offer the lucrative subsidies that drive development in other parts of the country …” emphasizes the News.

The article contrasts the scale of Texas’s previous solar power development vs. the future:

From small rooftop systems to Texas’ largest installation, a 39-megawatt solar farm in San Antonio, the state counts less than 220 megawatts of solar power. On a per-capita basis, that is nearly the lowest in the country.

But with almost 350 megawatts of new capacity scheduled to be built by 2016, that is likely to change.

Arno Harris, CEO of the major San Francisco-based power development firm Recurrent Energy, expressed optimism, noting:

Texas is a large market. And it’s a growing market. … It’s really just economics. The solar industry has driven prices down to where solar can compete.

In May, Recurrent announced plans to develop a new solar farm in West Texas, “more than three times the size of anything that currently exists in the state …” according to the report. Designed to produce 150 megawatts of power, the new project was launched after Recurrent signed “a 20-year power purchase deal with Austin Energy.”

Furthermore, reports the News, “That comes just months after First Solar, one of the world’s largest solar companies, began construction on a 22-megawatt farm near Fort Stockton with plans of eventually expanding to 150 megawatts.”

According to the article, driving the recent interest in solar power “are environmental mandates from Austin’s and San Antonio’s city-owned utilities to vastly expand how much electricity they get from solar in the decade ahead.” In addition, “the cost of solar has come down dramatically over the last two years — Harris estimated between 60 and 70 percent.”

The price of solar still needs to become more competitive says the report, noting that Recurrent is “reportedly selling power at the rate of around 5 cents per kilowatt hour ….” That’s “roughly 25 percent above the current wholesale rate in Texas.”

However, the inexorably rising cost of more traditional, fossil-fuel energy sources like oil, gas, and coal suggests that solar will become increasingly more economically attractive as time goes on. “But considering the 20-year contract and that power prices are prone to rise in the decades ahead, solar seems close to winning contracts on pricing alone …” says the article. ■

California’s Salton Sea becoming geothermal energy hotspot

Group of 7 geothermal plants at Salton Sea site generate enough electricity to power 100,000 homes. Photo: Clui.org.

Group of 7 geothermal plants at Salton Sea site generate enough electricity to power 100,000 homes. Photo: Clui.org.

Large-scale exploitation of the potential of geothermal energy to generate electric power seems to be becoming a reality at Southern California’s Salton Sea, a highly saline lake in the Imperial Valley formed by floodwaters from the Colorado River in 1905.

Described by a May 3rd Barron’s article as “one of few areas in the U.S. rich with geothermal resources” and a possible “launch site for geothermal energy in the U.S.”, the area attracts geothermal development because of its unique topographical access to subsurface geothermal formations. As Barron’s explains,

The shallow, salty lake sits atop the San Andreas fault, 226 feet below sea level. About a mile beneath Salton’s southern tip, the earth burns at 680 degrees Fahrenheit, a perfect place to convert naturally occurring heat into electricity.

According to the Center for Land Use Interpretation (CLUI), the Salton Sea already hosts several clusters of geothermal plants, creating :a network of deep wells drilled in the geothermal field” that “allow water, heated by the earth’s mantle, to come to the surface and to power electrical generators.” The largest of these geothermal production clusters, notes a CLUI article, is a group of seven plants owned by the CalEnergy Company.

CalEnergy’s electricity, sold to the local power utility, is channeled into the power grid. “The seven plants in this field produce enough electricity to power over 100,000 homes” reports CLUI.

Barron’s describes other efforts by a local utility, Imperial Irrigation District (IID), to develop geothermal resources. Since it owns of the land, IID hopes to farm geothermal energy profits back into restoration projects to preserve the Salton Sea, which is receding, particularly from the effects of drought.

But geothermal development isn’t necessarily easy or cheap, explains Barron’s.

The tricky part will be to find viable locations for injection wells, which can be several miles deep depending on the area. After that, the plants are essentially self-sufficient. Hot water is pumped to the surface, where it turns to steam, driving turbines connected to generators. The steam is then converted to water and pumped back into the ground.

IID estimates that a single 50-megawatt plant might cost $300 million. Furthermore, viability of geothermal development depends on cooperation from the state of California, which “must approve building a $2.5 billion transmission line that would plug the facility into the grid.” ■

Decatur ethanol production project showing success for carbon capture-storage (CCS) technology

CO2 compressor at ADM's Decatur, Illinois ethanol CCS facility. Photo: ADM.

CO2 compressor at ADM’s Decatur, Illinois ethanol CCS facility. Photo: ADM.

Decatur, Illinois — Efforts to demonstrate the effectiveness of carbon capture and storage (CCS) technology as a means of reducing global greenhouse gas (GHG) emissions seem to be achieving success in an Archer-Daniels-Midland (ADM) ethanol production project based in Decatur.

According to a March 21st report in the Decatur Herald-Review, the project seems to be on target, with the “process is going as planned” and CCS first phase described as “75 percent complete”.

Barring unforeseen drawbacks, the Decatur project could provide a strong boost for CCS applications in coal-fueled power generation facilities.

As recounted in a May 2012 report on the Ethanol Producer website, ADM’s project is part of the Illinois Basin-Decatur Project, an effort launch in 2007 and led by the Illinois State Geological Survey, the U.S. DOE, Schlumberger Carbon Services, and ADM. In fact, it’s the first of two CCS projects under way in the program, with the goal of proving that “large amounts of CO2 from industrial sources can be compressed and injected into deep geological formations for storage, thus reducing greenhouse gas (GHG) emissions and lessening their effects on the environment.”

There has been has significant federal investment in both CCS projects. Funding for the first project has been channeled through the Midwest Geological Sequestration Consortium under the Regional Carbon Sequestration Partnerships program of the U.S. Department of Energy (DOE).

The DOE’s interest in CCS stems from its belief that “the process offers a way to reduce GHG emissions and mitigate climate change…” notes Ethanol Producer. “But in order to advance the use of this technology, the economics of the operations first need to be proven.”

The technology itself seems to be working. Several years after launch, reports the Ethanol Producer article, in November 2012, CO2 from ADM’s Decatur ethanol plant at last “began being captured, transported via pipeline and injected for permanent storage into a nearby geologic formation known as the Mount Simon Sandstone….”

With CO2 capture and storage running smoothly, injection of the gas has continued, averaging 1,000 metric tons per day. The project is slated to conclude in the fall of this year (2014); at that point, project leaders hope to have injected as much as one million metric tons of CO2 into permanent storage in the deep underground reservoir.

Federal funding totaling $141 million for the second CCS project has been provided via the American Recovery and Reinvestment Act (“stimulus”) of 2009.

Success of the ADM’s Decatur ethanol CCS operation has been attracting political attention and support, according to the Herald-News coverage. U.S. Senator Dick Durbin, an Illinois Democrat, affirmed his belief that CCS “is part of the solution” to the problem solving the confluence of energy needs, of GHG emissions, and global warming.

Durbin sees the ADM CCS project as just a beginning, and he’s eyeing further efforts to test and advance CCS technology. These include launching FutureGen, planned to start at a site about 60 miles to west of Decatur. According to the Herald-News, Sen. Durbin sees FutureGen, focused on capturing emissions from coal-fired power plants, as”an even more ambitious project” and “a dramatic next step.”

In any case, ADM’s ethanol CCS venture at Decatur is garnering attention “from around the country and world” which “will continue to be focused on the site in Decatur to see if the project continues to be successful.” And, if this implementation of CCS technology “proves to be as worthwhile as anticipated”, reports the paper, “ADM has ambitious business aspirations” for it.

World’s largest solar thermal electric power generating complex nears opening in Mojave Desert

Three water towers of Ivanpah Solar Electric Generating System illumunated by concentrated sunlight from heliostat reflectors. Graphic: RAFAA.

Three water towers of Ivanpah Solar Electric Generating System illumunated by concentrated sunlight from heliostat reflectors. Graphic: RAFAA.

A major advance in innovative alternative electric power generation was achieved this past September with the opening of the Ivanpah Solar Electric Generating System on about 5.5 square miles of public land in the Mojave Desert of California. The system deploys concentrated solar power (CSP) technology, concentrating reflected sunlight via special mirrors called heliostats in a process to heat water into steam for running turbines to create electric power.

Jointly owned by NRG Energy, Inc., BrightSource Energy, Inc., and Google, the Ivanpah facility, with an investment cost of $2.2 billion (and a $1.6 billion loan guarantee by the U.S. Department of Energy), is a project of BrightSource Energy and Bechtel. It’s designed to generate 377 megawatts of power, enough electricity on some days to power over 200,000 homes. The facility’s power output will be sold to two Californian utilities, Pacific Gas & Electric and Southern California Edison.

Ivanpah solar thermal power project is located in Majoave desert, between Los Angeles and Las Vegas. Map: BrightSource Energy.

Ivanpah solar thermal power project is located in Majoave desert, between Los Angeles and Las Vegas. Map: BrightSource Energy.

The Ivanpah complex, currently considered the world’s largest CSP installation, consists of three solar thermal power plants, each with a vast array of heliostats focusing and concentrating sunlight on a special receiver in each central water tower. In the towers, the water is heated, creating high-temperature steam that is then piped to run turbines connected to electric power generators. The three arrays together deploy a total of 173,500 heliostats.

According to the main Ivanpah solar facility website,

The entire Ivanpah project features an industry-leading low-impact design, resulting in maximum land-use efficiency. Our heliostat technology places individual mirrors onto metal poles that are driven into the ground, which allows vegetation to coexist underneath and around our mirrors; reduces the need for extensive land grading; and uses far fewer concrete pads than other technologies.

A particular advantage of the Ivanpah design over other solar thermal designs, according to BrightSource, is its use of a dry air-cooling system, allowing the power complex “to reduce water usage by more than 90% over competing solar thermal technologies using conventional wet cooling systems.”

A major drawback to CSP systems such as Ivanpah is the requirement for huge expanses of acreage and the effects of open-air heating, and the impacts of both of these on the immediate environment. In the case of Ivanpah, there are complaints of disruption to wildlife habitats, and birds have been harmed by the intensely concentrated solar radiation from the heliostats.

On the other hand, there are major benefits such as a significant reduction in greenhouse gas emissions and the near-elimination of raw material consumption for ongoing power production. According to the Ivanpah Solar website,

More than 13.5 million tons of carbon dioxide emissions will be avoided over the 30-year life cycle of the plant, equivalent to taking 2.1 million cars off the road. This solar complex also cuts major air pollutants by 85% compared to new natural gas-fired power plants.

For additional information on the Ivanpah facility, see:

Ivanpah Solar Power Facility

World’s biggest solar thermal power plant fired up in California